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LEmER TO THE EDITOR 

Perturbative-variational calculations in two coupled 
harmonic oscillators 

F Arias de Saavedra and E Buendia 
Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, Spain 

Received 10 July 1991 

Abstract. In this work, we shall show how the perturbalive-variational approximation of 
eigenvalues and eigenvectors, that has provided very goad results for one-dimensional 
problems, can be generalized tn Hamiltonians with degenerate states. T h i s  generalization 
will be illustrated by applying it 10 a pair of coupled harmonic oscillatnrs The obtained 
results for the ground and first excited states have a very goad precision when they are 
compared with the results of direct diagonalization of the Hamiltonian with 190 states i n  
the same auxiliary basis used in the perturbative-variational approximation. 

Nowadays, there exist a lot of techniques that provide very good approximations of 
the eigenvalues and eigenfunctions of every Hamiltonian, especially for one- 
dimensional Hamiltonians. Among these techniques the so-called perturbative-vari- 
ational approximation has provided high precision results for some important cases 
[1,21. The basic idea of this approximation is to use the wavefunctions given by 

principally due to the adaptability of the auxiliary basis in which we make the 
perturbative expansion to the eigenfunctions, and the possibility of using the successive 
perturbation orders to improve the trial wavefunctions. The adaptability of the auxiliary 
basis, which is not necessarily orthogonal [2], is optimized leaving some free parameters 
in the hasis functions. In spite of the variational character of the perturbative-variational 
approximation that makes it especially useful for generating the ground state, it also 
provides very good results for the first excited states of the Hamiltonians studied [ 1.21. 

In this work, we shall extend the perturbative-variational approximation for non- 
one-dimensional problems. At first, this extension does not seem to show any formal 
problem at least for non-degenerate levels in the auxiliary basis. (We shall say that 
two functions in the basis are degenerate if their expectation values of the total 
nauutwmm aic =quai., 111 LING c a x  U, ~ w r i - u ~ g w c i a ~ ~  IGYCIS, wc can appy  L ~ I C  umameu 
equations for the one-dimensional case. However, the extension is not so straightfor- 
ward for degenerate states because the equations mentioned have singularities. 
Nevertheless, we shall find an easy solution for the problem that will allow us to use 
an approximation similar to the one-dimensional case. 

As an example for studying the approximation, we have chosen the Hamiltonian 
of a pair of coupled harmonic oscillators which, in its simple form, can be written as 

pe*uibaiioii theory. a j  i ~ a ;  f.UiiCiiOiij for a vaiiaiiona: ca;i-u;aiiuii, lis en"eci~veness is 

""...:I.̂  ̂ : ^ ^ ^ _ ^ ^  -..,., \,_. L _ ^ ^ ^ ^ ^  <---  >-"-----.*,-..-I^ -.- ---,...L.-LA-.~~, 

H ( x ,  y) =p:fp~+x*+y2+Ax*y2.  (1) 
This Hamiltonian has received a lot of attenti0.n in the last years because it is 

related with several interesting physical problems [3-51. Moreover, most of the tech- 
niques that provide good approximation for the eigenvalues have been applied to its 
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solution [6-81. Except for the first excited states, which have been calculated by 
Killingbeck and Jones [71, all the calculations have been limited to the ground state 
energy and to the study of the behaviour of the approximations for different values 
of A. In any case, it has been found that the convergence decreases when A increases. 
We shall show that the perturbative-variational approximation improves the results 
compared with the previous methods for every value of A, not only for the ground 
state energy but also for the first excited states, i.e. the first four oscillator shells. 
However, the method is not stable for higher excited states. 

The organization of the letter will be as follows. First of all, we shall expound the 
general procedure and how we can avoid the problems with degenerate states. Then 
we shall apply it to the coupled harmonic oscillators. Thereafter we will show the 
results obtained, separating the non-degenerate states from the degenerate ones. The 
results will be compared not only with those in [6-8] but also with the direct diagonal- 
ization of the Hamiltonian in a truncated space of the functions of the auxiliary basis, 
as we shall discuss later. 

As we have already mentioned, within the perturbative-variational approach, the 
trial wavefunctions are the ones provided by the successive perturbation orders as 
approximations to the exact eigenfunctions of our eigenvalue problem. The perturbation 
order may be considered as a free parameter, but the efficiency of the method is in 
the inclusion of one or more free parameters in the auxiliary basis in which we shall 
expand the function. Let us show the different elements that appear in the approxi- 
mation. 

We shall write I&) for the functions which form the auxiliary basis where 7 belongs 
to an arbitrary countable set d. Every one of these functions will depend on one or 
more free parameters that we shall not specify yet. We shall write H for our Hamiltonian 
and E,, I$”), u t  d, for the exact eigenvalues and eigenvectors of H .  So, the eigenvalue 
equation can be written as 

HI$”)= U €  d. (2) 

In order to build the different perturbative approximations for every I$”), we shall 
expand them in terms of our auxiliary basis 

I$”)= C”,J4*). (3 )  
.l=a 

Introducing (3) in (2) and projecting over I&) we shall get the eigenvalue equation 
(2) in our auxiliary basis 

Z Cu,J(++~H~4.,)- EJ,,,) = O  V / L E d  (4) 
.led 

where we have supposed that the elements in the auxiliary basis are orthogonal to 
each other, This condition is not necessary for the application of the method [2] but 
here we shall only use the orthogonal basis. It is important to note that up to here 
there is no approximation at all and (2) and (4) are equivalent. 

The perturbative approximation to the state w is generated by taking as a first 
approximation that CgA = a,,*, where 5 is the state of the auxiliary basis closer to the 
Y state of H. This perturbative hypothesis applied to (4) gives the perturbative approxi- 
mation of first order to the eigenvalue and eigenfunction. This is 

I$?) = 144 ( 5 )  

E?’=(&IHI&). ( 6 )  



Letter to the Editor L1211 

The perturbativeapproximations for the following orders, which form Brioullin-Wigner 
perturbation theory [9], are obtained from (4) imposing for every order I that C!,$ = 1. 
This allows us to obtain the approximation for the coefficients and the energy in order 
I +  1 in terms of the corresponding elements in order I. Explicitly the equations are 

Using this, the perturbation approximation of order I +  1 to the exact wavefunction 
can be written as 

i r  must be noted rhar equation (7) wiii be appiicabie whenever the denominator is 
not equal to zero in any of the perturbative orders. This can happen even for one- 
dimensional Hamiltonians since the choice of the basis is independent of the 
Hamiltonian that we are solving and may be that two different states from the auxiliary 
basis have the same expectation value of the Hamiltonian. However, it is evident that 
this possibility is greater for the non-one-dimensional Hamiltonian, which may prob- 

A possible option for avoiding these singularities is to fix the coefficients that cause 
the trouble to some value for every order, as we did for C!$. An easy criterion for 
doing it, that takes into account the symmetries of the Hamiltonian, is to solve the 
eigenvalue equation of our Hamiltonian in the auxiliary basis restricted to the set of 
degenerate states. The coefficients of the states involved for any perturbative order will 

an ambiguity, this is, for every degenerate state considered we have one equation of 
type (S), so we must decide which we must use for calculating the value of E!?". This 
answer is provided by the method because the final results are independent of this 
choice. 

This practical option is not completely perturbative but this does not mean any 
restriction to the P.rturbi~ive-.RI.:atio~~! ~pproximatior? beczuse this method on!;, cses 
perturbation theory for building trial wavefunctions and the approximation of the 
eigenvalue will he the expectation value of the Hamiltonian in this state. Keeping this 
in mind, we can say that this choice is valid and only the results obtained will allow 
us to know how good this choice is. 

The corresponding Hamiltonian to a pair of coupled harmonic oscillators (1) is a 

perturbative-variational method. Obviously, the first step will be the choice of 
the auxiliary basis in which we shall apply the method. In this case, the structure 
of the Hamiltonian suggests to use the eigenfunctions of a pair of non-coupled harmonic 
oscillators with a common and free strength, a. Using Cartesian coordinates, the 
functions of the basis will be 

&iY have real degenetaie siaies, 

he *La - - ~ "  - F t h -  ---- -----A;-- a:ralF..lnt:-- T+ :- -.,:An..+ th-t :- th:" -..L..- 
L,L L11S U L L Z I  "1 L U G  cu"c"y""""1E, C1&CL""L1CL1U". I ,  12 C l l U C L l L  L11'lL 111 L.113 " p L 1 u "  G n r r l D  

_.__ Pond exnmnle r__ show ?hp ch._r._c!eris!ics, the precision ;Ifid_ !he !imi!.!io.s of 

Where H.(z) is Hermite polynomial of order n [IO]. It must be noted that in this 
case .d = (N x N), with N the set of the natural numbers. We must emphasize that the 
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use of this basis, although it is suggested by the Hamiltonian, is independent of it and 
that it is not necessary to have any relation between the basis and the Hamiltonian 
for the application of the method. Of course, this simplifies the calculation. 

Another possible choice of auxiliary basis would be to solve the Hamiltonian of a 
pair of non-coupled harmonic oscillators in polar coordinates. The functions in this 
case would be 

where L!( z )  are the generalized Laguerre polynomials. In this case .QZ = (N x H), with 
Z the set of the integer numbers. Although the best results obtained with both basis 
are equal, the general behaviour is not completely the same. For example, the order 
in which we get stability is different. This dependence on the basis used is evident and 
is caused by the different adaptability of the basis functions to the problem. 

Once we have chosen the basis, we must establish the degeneration of the different 
states in the sense discussed above. This is, we must find out which states have the 
same expectation value of the Hamiltonian. In this case, this is quite simple because 
the natural degeneration of the non-coupled harmonic oscillator ( n , +  n2 fixed for the 
Cartesian case and n + Iml fixed for the polar case) is reduced by the presence of the 
coupling term H, = Ax2y2. In the case of the Cartesian basis 

From this is clear that if n ,  # n2 the states n1n2 and n2n1 will be degenerate. In the 
case of the polar basis we have a similar result. If m # 0 the states n,+lml and n,- Iml 
will be also degenerate. 

It is important to point out that this degeneration is not the degeneration of the 
exact eigenfunctions of the system. This degeneration may disappear if the Hamiltonian 
is able to connect the degenerate states in some perturbation order. This is, if 

(n,n2(H,in,,n,~)(n,,n,,IH,In,,n,,). . . (nm,nk,lHlb2nJ (13) 

is different from zero, where n,,nk,/ = 0, 1 ,  . . .can be any one of the states. For the 
particular structure of our Hamiltonian, and with the Cartesian basis, it will occur only 
if n ,  + n2 is even. 

To conclude, and before discussing the results, we must mention that the criterion 
for fixing the coefficients in the case of degenerate levels, as they can only be doubly 
degenerate, leads to an even or odd combination of both states. So, in the following 
calculations and for degenerate states, we shall use these combinations. 

Several aspects must be taken into account when we study the numerical results 
provided by the perturbative-variational method. There are differences for the ground 
state to the rest of the states. For the ground state, we are sure that the result will be 
upper bounds to the exact ground state energy. Therefore, this state is the best one to 
study the principal aspects of the method such as its convergency, the precision in the 
results and the dependence on the basis. 

In table 1,  we show the best results obtained for the ground state energy for different 
values of A. The results have been obtained using the Gauss-Seidel method [ l l ]  in 
the iterative process of the equations (7) and (8). This Gauss-Seidel method reduces 
the number of iterations needed to achieve stability and improves the precision and 
stability especially for A > 1. For example, with A = 10 and using directly the equations 
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Table 1. Best penurbaiive-variational resultS for the ground state energy for different values 
of A. EL is the value of the strength of the oscillator and i t  is the only free parameter in the 
functions. We write 0. and no for the minimum perturbation order in which we get stability 
for the Cartesian and polar basis, respectively. 2 d  is the maximum shell used in the 
calculation far the Gauss-Seidel iterative method [ I  I, 21. Remember that the ground state 
is only connected with shells with even number of quanta. 

h d n. n P  d E 

0.1 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 

10.0 
100.0 

I 000.0 
10000.0 

1.05 3 4 8 
1.20 6 7 14 
1.30 8 IO 16 
1.40 IO 13 19 
1.50 12 18 20 
1.60 13 21 23 
1.70 16 25 27 
1.90 19 37 31 
2.70 38 70 48 
3.90 43 81 55 
5.70 48 93 59 

2.024 138 321 415 73 
2.10821377969854 
2.19591808520009 
2.339566210 15925 
2.458 376 906 236 76 
2.561 626575 64004 
2.653 909 777 953 22 
3.019 177714771 97 
5.460 970 397 923 37 
11.232 439 267 209 9 
23.945 989 627 819 0 

(7) and (8) in the iterative process, we only get the seven first digits in the results and 
for n, = 26. 

When we use Gauss-Seidel method, it is necessary to limit the number of states 
that we shall use in the calculation. This number has been fixed in a way that does 
not affect the final result. The maximum shell of the pair of non-coupled oscillators 
used in the calculation is 2d, where d is given in table 1, and it is almost independent 
of using a Cartesian or polar basis. This is not the same for the order of stability. In 
this case, we can see that the order necessary to get stability with the Cartesian basis, 
denoted in the table by n, is smaller than the corresponding order for the polar basis, 
np. With respect to the expectation values of the Hamiltonian, they are independent 
of the basis used when we have reached stability and have a high precision. They are 
equal to the ones obtained by Fernandez and Castro [6], who use a renormalized 
perturbation series, but we need to use a lower order in the perturbation series to get 
stability and we know that our results are upper bounds to the exact energy. 

I n  order to have a reference point for the energies obtained for the excited states 
we have performed a diagonalization of the Hamiltonian in the basis (10)  moving the 
parameter a lo improve the results. This procedure gives upper bounds not only for 
the ground state but also for the excited states [12]. It is important to compare the 
results provided by this method also from the ground state with the one from the 
perturbative-variational method. This can be seen for A = 1 in table 2. The results are 
the same but to obtain this precision for direct diagonalization we need to use 190 states. 

Let us now study the excited states. We shall use in this case only the Cartesian 
basis because the convergency of the method is faster in this basis. It is important to 
note the symmetries of the Hamiltonian (1) in the Cartesian basis. The total space is 
divided into four mutually orthogonal subspaces that cannot be connected by the 
Hamiltonian in any pertuibative order. They are characterized by the numbers (n,, n2j 
to be (even, even), (even, odd), (odd, even) and (odd, odd) numbers. Note that the 
degeneration between the state ( n , ,  n2) (even, odd) and (n2, n,) (odd, even) is  intrinsic 
to the Hamiltonian and it cannot be broken by the perturbative-variational method. 
The orthogonality among the four subspaces has the important outcome that the states 
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Table 2. The first States for A = I .  In the first Column, we have written the initial state of 
the basis and with li = +, - we represent the even, odd combination of the two degenerate 
states. E,, are the results corresponding to the penurbative-variational approximation 
working with a = 1.3 and d = 3 0  (see table I ) .  E ,  are the results obtained from a 
direct diagonalization which the first 190 states with o/ = 1.30 connected to the subspace 
considered. 

(0.0) 2.195 918085 20009 2.195 918 085 200 09 
(0,l) .  (1.0) 4.526 743 874 391 03 
(2.0). 6.557 803 326 672 40 

4.526 743 874 391 03 
6.557 803 326 672 29 . .  . 

(2 ,0)+ 7.031 272340 12999 
(1, I) 7.444 581 361 56997 
(3,O). (0 .3 )  8.928 061 OS4 22s 64 
(2.1) . (1 .2)  10.311 8170496464 
(4,O)+ 11.103253 537431 5 
(4.0). 11.201 1789183658 
(3.1). 12.332331271 1185 
(3, I ) +  13.450478721 883 1 
(2 ,2 )  13.580 556 252 436 3 

7.031 272340 13003 
7.444581 361 56996 
8.928 061 054 226 28 
10.31 1 817 049 646 7 
11.103 253 537438 6 
11.201 178 918 400 0 
12.332331271 1188 
13.450478 721 883 6 
13.580 556 252 446 6 

generated by (n,, nJ = (1,0), (0, I ) ,  (1, 1) are also upper bounds to the corresponding 
eigenvalues. However, this character of the upper bound disappears for the rest of the 
states. In spite of this limitation, the method keeps providing very good results for the 
lower excited states, upto n , + n , s 4 ( 3 )  for% = 1, (100). For higher exited states, the 
results worsen and the method is unstable. 

In table 2, we show the energies of all the states with n , + n , S 4  for A =  1. It can 
be seen that these results are very good and are almost equal to the ones obtained by 
direct diagonalization, which are all strict upper bounds to the corresponding eigen- 

Jvalues. The high precision in the results of the states (O,O), (1,O) which is degenerated 
with (0 , l )  and ( I , ] )  is not a surprise because in this case the perturbative-variational 
method also provides upper bounds. However, this property is lost for the rest of the 
states because the functions of the perturbative-variational method are not strictly 
orthogonal to all the states with lower energy but despite this, the results are still very 
good. This behaviour can be explained if we see that the functions obtained for the 
excited states are almost orthogonal to our approximation ofthe ground sfaie wavefunc- 
tion, which may be practically considered to be the exact wavefunction because the 
excellent results for the energy of this ground state. The different overlaps among the 
functions are shown in table 3. It must be emphasized that orthogonality among the 
states is an outcome of the method and it has not been imposed. 

We have seen that the method becomes unstable for higher excited states. The 
reason of this instability is that the weight of the subspaces corresponding to lower 
states increases in the approximation of these higher excited states and reasonable 
values cannot be obtained. It is important to note that the perturbative-variational 
method has in this case only one free parameter (a) compared with the direct 
diagonalization, which is equivalent to make a variational calculation of a linear 
combination of functions in the basis [I31 (in our case the trial wavefunction will have 
190 free parameters). 

Summing up, we have shown that the extension of the perturbative-variational 
method to degenerate systems does not imply any additional difficulty. The problem 
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Table 3. Overlap bewcen the penurbative-variational states related to the T ~ S U ~ I S  shown in 
table 2. It must be noted that the subspaces with (n,, nJ  (even,even), (even,odd) and 
(odd, odd) are mutually orthogonal. 

(0.0) - 7 . 8 ~  IO-" 2.1 x IO-" - 6 . 0 ~  IO- "  I . l ~ l 0 ~ ' ~  - - 1 . 6 ~ 1 0 ~ ~  
(2,0)+ 1 . 3 0 ~  10.~ -2.1 x 8 . 9 X  IO-" -7.1 X 10.' 
(2,o)- 3 . 5 ~  IO-' -2.sx 10-9 -3.7x 10-8 
(4,O)' 4.3 x 10-9 - 7 3 x  10-8 

(even, odd) (2,  I )  (0.3) (odtl, odd) (3. I ) +  ( 3 , l ) -  

(0, I) 6.8 x 10.' -4.9 x lo-" (I, I) 2.2 x 10-'2 9.1 x IO-" 
(2 .1)  1.3x10-' (3,  I )*  -2.5 x 10-1' 

(4,o)- - 3 . 0 ~  10.' 

" 

that we have found are the same as that in the non-degenerate case, that the instability 
of the method for high excited states. Obviously, the calculation of the matrix elements 
of the Hamiltonian in the auxiliary basis is necessary, and common to other similar 
techniques, and the need of making it analytically an important limitation to the 
method. However, the results are excellent and, in any case, comparable to the hest 
results provided by the known me$ods. In this sense, it is important to emphasize 
again that we have only one free parameter in the calculation and that perturbation 
theory fixes the values of the coefficients in the expansion of the trial wavefunction. 
To conclude, that the character of upper bounds to the exact values of our results for 
the first states make them especially attractive when we compare with the results of 
other similar techniques. 

This work was partially supported by the Spanish Direcci6n General de Investigacih, 
Ciencia y Tecnologia (DGICyT). 
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